∑ n ∈ N cos n ≤ | ϕ n → | 1 n 2 ∗ 2 n ∫ 0 2 n π r ∑ n = 1 ∞ 1 2 n sin n x + ∑ n = 1 ∞ arctg 1 n 2 + n + x + x 2 n ! + 1 ∏ n ∈ N | ϕ n → | d x # ( ⋂ i ∈ I pr i ( φ C ( int ( ℜ ( 1 n ∗ E ′ _ ) ¯ × ℑ ( 1 n ∗ E ′ _ ) ¯ ) , 0 ) ) = ξ ( E ) {\displaystyle {\frac {{\begin{array}{c}\sum \\n\in \mathbb {N} \\\cos n\leq |{\overrightarrow {\phi _{n}}}|\end{array}}{\sqrt {{\frac {1}{n^{2}*2^{n}}}\int _{0}^{2n\pi r}{\frac {{\sqrt[{n!}]{\sum _{n=1}^{\infty }{\frac {1}{2^{n}\sin nx}}+\sum _{n=1}^{\infty }{\textrm {arctg}}{\frac {1}{n^{2}+n+x}}+x^{2}}}+1}{\prod _{n\in \mathbb {N} }|{\overrightarrow {\phi _{n}}}|}}dx}}}{\#(\bigcap _{i\in I}{\textrm {pr}}_{i}(\varphi _{\mathbb {C} }({\textrm {int}}({\overline {\Re ({\underline {{\frac {1}{n}}*E'}})}}\times {\overline {\Im ({\underline {{\frac {1}{n}}*E'}})}}),0))}}\quad =\quad {\sqrt {\xi (E)}}}